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1. Introduction

Solid-state phase transformations are important means for the
adjustment of the microstructure and thus are the tuning of the
properties of materials. To exploit this tool to its full extent, much
effort is spent on the modeling of phase transformations [1-6].
Recently, an analytical phase-transformation model was proposed
that incorporates a choice of nucleation and growth mecha-
nisms, as well as impingement modes, and has been successfully
applied to experimental results [7-9]. The model leads to equa-
tions for the degree of transformation that have the structure of
the Johnson-Mehl-Avrami (JMA)equation but with variable kinetic
parameters (n, the growth exponent, Q, the overall effective activa-
tion energy and Ky, the pre-exponential factor of rate constant), i.e.
for a mixture of site saturation and continuous nucleation (or mixed
nucleation). For isothermal transformation (i.e. the temperature
holds constant upon transformation) and non-isothermal trans-
formation (i.e. in this paper, the heating rate holds constant upon
transformation), these kinetic parameters are, according to the
analytical model, time-dependent and temperature-dependent,
respectively. In the original treatment [7,8], to derive the analytical
model, the so-called “general temperature integral” [10] cannot be
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solved analytically and has to be approximated.!

T
Q RTM+2 exp(—(Q'/RT))
Texp(—=)dT = - (1)
/TO (-#r) Q

where Q' as the constant activation energy of an Arrhenius equa-
tion, R the universal gas constant, T the temperature, Ty the starting
temperature, M a constant (for M =0, the left-hand side of Eq. (1)
becomes the so-called “temperature integral” [12,13]). Applica-
tion of Eq. (1) is essential for deriving the analytical model, which,
however, is too coarse to give a sufficiently precise description
for non-isothermal transformation, particularly with low activation
energy and/or high transformation temperature (i.e. Q'/RT<25),e.g.
the austenite-ferrite phase transformation of Fe-Mn alloys [14].

Within the last 50 years, a lot of approximations to the “temper-
ature integral” and the “general temperature integral” have been
proposed [10,12,15-26]. Generally, the more accurate the approx-
imation is, the more complex the formula becomes (e.g. a recently
proposed quasi-exact solution [27,28]). It is worth to do so, as Flynn
[13] said that, in this age of vast computational capabilities, there
is no valid reason not to use precise values for the temperature
integral when calculating kinetics parameters.

On this basis, a question arises, i.e. is it possible to generalize the
originally analytical model, by incorporating the above treatment

1 To avoid unnecessary complications, the effect of Ty terms is not taken into

account in the current treatment for the approximations. However, Starink [11]
has realized that in a limited number of cases, the effect due to Tp terms cannot
be neglected. If this happens, the current model can also take the Ty terms into
consideration.
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Nomenclature

Ce variable defined by d, m, Qy, Qg, pm(x) and q(x)

Cs variable defined by d, m, Qg and q(x)

Do pre-exponential factor of diffusion coefficient
(m2s-1)

d dimensionality of the growth

f transformed fraction

fa model-predicted transformed fraction

fa numerical-calculated transformed fraction

g particle-geometry factor

Ko pre-exponential factor of rate constant

M constant in general temperature integral

m growth mode parameter

N} number of pre-exist nuclei per unit volume in mode
of site saturation (m=3)

No1 pre-exponential factor of nucleation rate in mode of

continuous nucleation (m=3s-1)
n growth exponent
Q overall effective activation energy (Jmol-1)
Qp activation energy for diffusion (Jmol~1)
Qg activation energy for growth (Jmol~1)
Qn activation energy for nucleation (Jmol-1)
Q activation energy (Jmol—1)
R universal gas constant (Jmol~! K-1)
T absolute temperature (K)
To starting absolute temperature (K)

t time for transformation (s)

1% real volume (m3)

Ve extended volume (m3)

v interface velocity (ms—1)

Vo pre-exponential factor of interface velocity (ms~1)
X variable defined by Q'/RT

Xe extended transformed fraction

Xc variable defined by Qg/RT

XN variable defined by Qn/RT

XN+G variable defined by (Qy + Qg)/RT

XN+2G variable defined by (Qn +2Qg)/RT

XN+3G variable defined by (Qy +3Qg)/RT

Y volume at time t of a particle nucleated at time t
(m3)

&r relative error of the model-predicted transformed
fraction (%)

T time for nucleation (s)

(e constant heating rate (Ks~1)

for the “temperature integral” and the “general temperature inte-
gral”? Here, a generally analytical description for non-isothermal
solid-state transformation, which considers not only a choice of
nucleation mechanisms, but also a choice of approximations to the
“temperature integral” and the “general temperature integral”, will
be shown.

2. Theoretical
2.1. Theoretical background

In the following, a brief description for applied modes of
nucleation and growth is given (i.e. solely for non-isothermal trans-
formation).
2.1.1. Modes of nucleation

The term site saturation is used here for the case of initial nucle-
ation site saturation where all nuclei are present at Ty already. This

Table 1

Expressions of q(x) considered in this work.
Authors q(x)
Balarin [15] \/HI‘;
Cai etal. [16] 40
Urbanovici and Segal [17] X;i;izs

x24(16/3)x-+(4/3)
x2+(22/3)x+10
x3110x2 +18x
x3+12x2+36x+24
x4 —4x3 184x2
x4-2x34+76x2 +152x-32
x4118x3 +86x2 +96x
x4420x3 +120x2+240x+120

0.9999936x4 +7.5739391x3 +12.4648922x2 13.6907232x
x4+9.5733223x3+25.6329561x2 +21.0996531x+3.9584969

Chen and Liu [18]
Senum and Yang I [19]
Zsaké [20]

Senum and Yang II [19]

Orfio [12]

implies for the nucleation rate at time t [7,8],

T(r)d)— To)

with 8{[T(t) — To]/®} denoting Dirac functions, N5 as the number
of nuclei per unit volume, and @ (=dT/dt =dT/dt) as the constant
heating rate with T(7) =T, + D.

The continuous nucleation rate per unit volume (i.e. the rate

of formation of particles (nuclei) of supercritical size) is at large
undercooling only determined by the rate of the jumping of atoms
through the interface between the nucleus of critical size and the
parent phase, which can be given by an Arrhenius term,
R(T(e) = Nov exp () 3)
where Ny; is a temperature-independent pre-exponential fac-
tor, and Qy is the temperature-independent activation energy for
nucleation.

Here, a short introduction is given for (more general) mixed
nucleation in non-isothermal transformation. “Mixed nucleation”
represents a combination of site saturation and continuous nucle-
ation modes: the nucleation rate is equal to some weighted sum
of the nucleation rates according to continuous nucleation and site
saturation [7,8]. Hence,

LI)@_ TO) +Nop exp (—%) (4)

where Nj and Np; include the relative contributions of the two
modes of nucleation.

N(T(2)) = Ni6 ( )

N(T(7)) = Ni8 (

2.1.2. Modes of growth

The diffusion-controlled and the interface-controlled growth
modes can be given in a compact form. At time t (i.e. tempera-
ture T(t) =Ty + ®t) the volume Y of a particle nucleated at time 7
(i.e. temperature T(7)) is given by [7,8],

d/m

T(t) T
Y(T(t) =g / vd = (5)
T(7) @

where g is a particle-geometry factor, v the growth velocity, m
the growth mode parameter (m = 1 for interface-controlled growth;
m =2 for volume diffusion controlled growth) and d is the dimen-
sionality of the growth (d=1, 2, 3) [7,8].

For large undercooling, v=vgexp(—Qg/RT(t)) with Qg as
the temperature-independent activation energy for growth. For
interface-controlled growth, vg is a temperature-independent pre-
exponential factor and Qg represents the energy barrier at the
interface. For volume diffusion-controlled growth, vy equals the
pre-exponential factor for diffusion Dy and Qg represents the acti-
vation energy for diffusion, Qp [8].
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Expressions of py(x) considered in this work.

Authors

pm(x)

Wanjun et al. [21]
Caietal.1[22]
Caietal. Il [23]
Caietal. Ill [10]
Chen and Liu I [24]
Chen and Liu II [25]

Chen and Liu Il [25]

- X
X-+(M+2)(0.00099441x+0.93695599)

x—0.054182M+0.65061
x+0.93544M+2.62993

0.99954x-+(0.044967M+0.58058)
X+(0.94057M+2.5400)

1.0002486x+0.2228027 In x—0.05241956M+0.2975711
x+0.2333376Inx+0.9496628M+2.2781591

(14 m2) 7 [14 202 4 Crx:2)]

X
(1.00141-+0.00060M )x+(1.89376+0.95276M)

x+(0.74981-0.0639M)
(1.00017+-0.00013M)x+(2.73166+0.92246M)

53

0.7110930099291700 (

Capela et al. [26]

+0.010389256501586 (

+0.2785177335692400 (

x M+2
X+ 0.41577455678348 )

x M+2
X +2.294280360279042 )

x M+2
X + 6.289945082937479 )

2.1.3. Impingement

The number of supercritical nuclei formed in a unit volume, at
time 7 during a time lapse, dT(t)/®, is calculated by Egs. (2)-(4) for
different modes. The volume of each of these nuclei grows from t
(i.e. T(7)) to t (i.e. T(t)) according to Eq. (5) where it is supposed that
every particle grows into an infinitely large parent phase, in absence
of other growing nuclei. In this hypothetical case, the volume of all
particles at temperature T, called the extended transformed vol-
ume, V¢, can be described as,

’ T

Ve = / vN(T(r))Y(T)dﬂ (6)
To e

with V as the sample volume, which is supposed to be constant

throughout the transformation. Accordingly, the extended trans-

formed fraction, x,, is defined as x, = V¢/V.

Inreality, the particles do not grow individually into an infinitely
large parent phase. A relationship between the real transformed
fraction, f, and the extended transformed fraction, x., is required.
Several equations for different types of hard impingement are sum-
marized in Ref. [8]. In this study only the mode of random dispersed
nuclei is taken into consideration [2-6],

df

g =1 f and f=1—exp(—x) ™)

2.2. New derivation

Assuming mixed nucleation (i.e. Eq. (4)) and interface-
controlled growth (i.e. Eq. (5)), the extended transformed fraction,
Xe follows from Eq. (6) as,

Table 3
Expressions for C; and C. used in the currently analytical model.

dim Cs(djm) Ce(djm)
1 qxg) 2 xg) [q(XN) _ Pz(XNH;J:I

Q Q Qv QAv+Qg

2 2

a(xg) axe)” [ alxn) P2(XN+G) | PalXni2g)
2 ( Q@ ) 3 Qg2 [ Qv -2 Qv+Qc + Qv+2Qc ]

Q(Xc))3 axg)? [Q(XN) _ 9 P2(nsc) Pa(Xni26) pG(xNBC)]
3 (Qc 4 v ~3qree t3ozae T oeie

By defining x = Q'/RT, the “temperature integral” is expressed as
[12,15-20],

T
Q’ RT? exp(—(Q'/RT))
/0 exp (—ﬁ) ar = == g 9)

where ¢(x) represents the rational functions of x derived
using different methods. From Ref. [12], the expressions of
the most accurate formula for q(x) corresponding to different
complexity-levels are gathered in Table 1. Assuming x¢(T) = Qg/RT,
xN(T)=Qn/RT,  xn+c(T)=(Qn +Qg)/RT,  xXn+2c(T)=(Qn +2Qg)/RT,
Xn+36(T)=(Qn *+3Qg)/RT, consequently, for d/m=1, Eq. (8) can be
rewritten as,

N* 2 2
Xe = gv;) ! [CXP (—%) %Q(XG(T))—EXP (—1%0) %Q(XG(TO))}
T
gvon Q(; RTZ QN
+ 55z eXp (—ﬁ> GQ(XG(T))/T exp (_W(r)) dT()
0

.
2
_ gvoNoy / exp (_QN + Qﬂ) RICTY o xe(T(o)aT(D) (10)
To

P2 RT(7) Q¢

With reference to Table 1, the value of g(x), close to unit, is insen-
sitive to T, and thus the integral of the last term at the right-hand

side of Eq. (10) can be approximated as q(xG(T))sz exp(—((Qn +
Qc))/RT(D))RT(7)* /Qg)dT(T).

Corresponding to Eq. (9), the “general temperature integral” is
expressed as [10,21-26],

T
Q RTM*2 exp(—(Q'/RT))
Texp(-=)dT = - pm(x) (11)
/0 ( RT) Q M

where, py(x) represents the functions of x and M (see Table 2)
derived using different methods.
Neglecting the terms including Ty (cf. Eq. (1)), Eq. (10) leads to,

2
e = guo exp (~ 22 ) S5 90E)  gugnioy exp (2
RT2* q(xc)a(xn)  q(xc)p2(Xn+c)
) <‘P> ("o~ @iaay) (12)
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Table 4

Expressions for the growth exponent, n, the overall effective activation energy, Q, and the pre-exponential factor of rate constant, Ko, to be insert in Eq. (14

see Table 3.

). For G5 and C,

Kinetic parameter Mixed nucleation

d 1
n d
m Ty
Q M
gu /m
K3 CSN*
((d/m)+1) 1/ (1+(rp /1)~
L) CCNDIEXD —(Qn/RT)) R12
T ((d/m)+ 1)C5N*

1/Q+ry/r)™)
1/ 1+(ry /1)) -1
(e (1+(2)")) }

Analogously, for d/m=2 and 3,2 a compact form results as,

(d/mg\ (RT2\""
RT P

Qn + (d/m)%)

Xe = guo¥™N; Cya/m) €XP (

1 dm _
+ @/m T 78v0 No1Cod/m) €Xp ( RT

RT2 (d/m)+1
(%)

where Cg(gmy and Cy(gjmy are listed in Table 3. A detailed derivation
is available in Appendix A. Assuming the impingement mode due
to random nuclei dispersion (i.e. Eq. (7)), the transformed fraction
can be represented by,

f:1_exp< 1<n<R;> ex p( ’;‘%))

where n, Q, and Ky are listed in Table 4.

Clearly, the currently analytical model has the same form as
the originally analytical model (see Table I and Eq. (36) in Ref.
[71]). The only difference between the two models is the expres-
sions for Cs and C; (see also rp/ry in Table 4), which, due to the
different approximations to “temperature integral” and “general
temperature integral”, affect the precision of the currently analyt-
ical description (see Tables 1-4).

Actually, if the condition of q(x) =1 and pps(x) =1 is adopted, both
Egs. (9) and (11) reduce to Eq. (1), so that the currently analytical
model reduces to the originally analytical model. Thus, the current
model, as a generalized one of the original model, not only con-
siders a choice of nucleation modes, but also incorporates a choice
of approximations to the “temperature integral” and the “general
temperature integral”.

(13)

(14)

3. Comparative study for the model

A comparison of kinetic parameters (n, Q and Ky) deduced from
the originally analytical model (i.e. q(x)=1 and py(x)=1) and from
the currently analytical one (e.g. Chen and Liu formula as g(x) and
Cai et al. I formular as py(x) in combination with Tables 3 and 4) has
been performed for a series of non-isothermal transformations (i.e.
@ =5, 10, 20 and 40 K/min) assuming mixed nucleation, interface-
controlled growth and impingement mode due to random nuclei
dispersion (Fig. 1(a-c)). On this basis, a comparison between the
model-predicted transformed fraction, f(i.e. using Eq. (14)) and the
exact one (i.e. numerically calculated using Eqs. (6) and (8)) has also
been performed; see Fig. 1(d). Values of model parameters are given
in Table 5.

2 Whether the approach is applicable to transformations assuming volume diffu-
sion controlled growth (i.e. d/m=1/2 and 3/2) needs further investigation.

Table 5
Values for parameters used for model calculations.

Model parameters

d/m Nj(m-3
1x 10"

) Noi (m=3s71)

1x10%

Qv (Jmol™)
1x10°

Qe (Jmol™") vp (ms™")
15x10°  1x10'°

Value 3

As shown in Fig. 1(a-c), insignificant deviations occur between
the kinetic parameters (n, Q and Kp) predicted from the originally
and those from the currently analytical model.3 However, the rela-
tive small deviation causes a substantially magnified deviation (i.e.
due to the originally and the currently analytical model) from the
numerically calculated f data (Fig. 1(d)). So, the influence of the
temperature integral is strengthened through modeling the trans-
formed fraction. This also implies that the kinetic parameters due
to the currently analytical model should be more precise.

4. Accuracy evaluation for the model

As shown in Refs. [10,12,15-26], the accuracy of different
approximations to the “temperature integral” and the “general
temperature integral”, i.e. the formulas for g(x) and py(x), depends
principally on the specific value of x. Given a real phase transfor-
mation, the mechanism (e.g. activation energy and transformation
temperature range) must be fixed, so that a specific formula of g(x)
and py(x) should be preferred. So, by the model fits with differ-
ent combinations of g(x) and py(x) to a real transformation, the
currently analytical model allows to find the optimal combination.

Defining f, and f, as, respectively, the solution obtained from
the model prediction (i.e. Eq. (14) with Tables 3 and 4) and the
numerical calculation (i.e. Eqs. (6) and (8)), the relative deviation
(in percentage) for the model-predicted fdata can be expressed as,
£r(%) = 100 (7_ ) (15)

Eq.(15)is applied for a series of non-isothermal transformations
assuming continuous nucleation,” interface-controlled growth and
impingement mode due to random nuclei dispersion, for a range of
x (i.e. Q/RT=5-50). Each pair of q(x) (Table 1) and py(x) (Table 2) is
adopted in the calculations. The deviations of the model-predicted
fdata from the numerical one are shown in Table 6.

Applying the originally analytical model, even at large x value,
sufficiently precise model-predicted f data cannot be obtained (see
Table 6). Whereas, using the currently analytical model, sufficiently
precise model-predicted fdata result for both high and low x values,

3 The relative deviation for n, Q and Ky between the two models are 0.49%, 0.15%
and 0.42%, respectively.

4 The relative deviation for f between the two models is 5.7%.

5 Applying continuous nucleation is aiming to facilitate the calculation. As for
continuous nucleation, Q holds constant in the whole process of transformation
[8], which is convenient for a fixed x value. The treatment can also be applied to
transformation with mixed nucleation, i.e. varying value of Q [8].
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Table 6
Deviations (in percentage) of the model-predicted transformed fraction from the numerical one at selected x values.
Combination of the approximations er (%)
pu(x) q(x) 5 7.5 10 15 20 30 40 50
1 1 —a -a -a -a —a —a 43 6.6x 101
Balarin -2 3.3 1.7 6.0 x 107! 2.7 x 1071 1.5x 107! 1.7x 107! 22x1071
Cai et al. 47 1.6 6.1x 107! 1.1x 107! 5.1x 1072 1.2x 107! 2.0x 107! 2.7 %1071
Urbanovici and segal 3.5 1.7 8.9x 10! 3.0x 107! 14x10°! 1.0x 107! 1.5x 107! 2.1x10!
Wanjun et al. Chen and Liu 3.8 1.7 82x107! 2.6x 107! 1.1x 10! 9.2 x 102 14x 107! 2.0x 107!
Senum and Yang I 3.6 1.7 83x 107! 2.6x 107! 1.1x 107! 9.3 x 102 1.5x 10! 2.0x 107!
Zsaké 47 1.8 2.8x 107! -75x10""  -82x10"" —-54x10"1 -29x10"7 —1.1x10"!
Senum and Yang II 3.7 1.7 841071 2.6x 10! 1.1x 10! 9.3 x 102 1.5x 10! 2.0x 1071
Orfio 3.8 1.7 8.4x 107! 2.6x 101 1.1x 107! 9.3 x 102 1.5x 10! 2.0x 107!
Balarin -a 3.1 18 8.1x 107! 43x107! 1.6 x 107! 6.7 x 102 3.0x 1072
Cai et al. 3.3 1.4 7.3 %1071 33x 10! 2.1x1071 1.3x 107! 9.7 x 102 8.3 x 1072
Urbanovici and segal 2.2 1.5 1.0 5.1x107! 2.9x 107! 1.1x 107! 4.6x 1072 1.9x1072
) Chen and Liu 2.4 15 9.4x107! 47 x 107 2.6x1071 1.0x 107! 4.1x1072 1.6x 1072
Caietal ] Senum and Yang I 22 14 9.5x 101 48x 10 2.7x 101 1.0 x 10! 42x1072 1.6 x 1072
Zsaké 33 16 3.9x 10! —53x10"7  -67x10"" —54x10"' -39x101 -3.0x10"!
Senum and Yang II 2.3 15 9.6x 107! 4.8x 101 2.7 x 1071 1.0x 107! 42x1072 1.6x 1072
Orfio 2.4 15 9.6x 107! 48x107 2.7 x 1071 1.0x 107! 42x1072 1.6x 1072
Balarin 3.8 1.4 47 %107 -13x107"  -28x10"" -31x10" -27x10"1 -22x10"!
Cai et al. 8.5x 107! -39x10°!" -63x107!' -61x10"' -50x10"' -34x10' -24x10!" -1.7x10!
Urbanovici and segal ~ 2.7 x 10! —26x10""  -35x10"' —43x10"' —42x10" -35x10"" -29x10"! —24x10"!
) Chen and Liu —29x1073  -30x10"' —42x10"" —47x10"" -44x10" -36x10"" -29x107" —24x10"!
Caietal. Senum and Yang | ~18x10""  —31x10" —41x10"1 -46x10"" -44x10"" -36x10"" -29x10-!' —24x10"!
Zsaké 9.2x10"1 ~16x10""  -97x10"' -15 ~14 -1.0 ~73x10""  —55x10"!
Senum and Yang II —77x102 -29x10"' —40x10"" —46x10"1 —44x10" -36x10"! -29x10"' —24x10"!
Orfio —62x102 -29x107' -40x10"" —46x10"" -44x10" -36x10"" -29x10"' —24x10"!
Balarin —a 29 1.7 7.8x 1071 44 %107 2.0x10-1 12x 107! 7.7 x 1072
Cai et al. 3.1 12 6.0x 107! 3.0x 10! 22x101 1.7 x 107! 1.5x 107! 13x 107!
Urbanovici and segal 2.0 13 8.8x 10! 4.8 x 10! 3.0x 10! 1.5x 10! 9.6 x 102 6.5 x 102
) Chen and Liu 23 13 8.1x 1071 44x1071 2.8x 101 14 x 107! 9.0x 102 6.2 x 102
Caietal. Il Senum and Yang | 21 13 82x10""  44x10'  28x107  15x107'  91x102  63x10-2
Zsaké 3.2 1.4 2.7x 107! —56x10"' —66x10"" —49x10! -34x10"" -25x10"!
Senum and Yang II 2.2 1.3 83x 107! 44x107 2.8x 1071 1.5x 107! 9.1x 102 6.3 x 1072
Orfio 22 13 83x 1071 44x1071 2.8x 101 1.5 % 10! 9.1x 102 6.3 x 102
Balarin -2 2.7 1.6 74x1071 42x 107! 1.9x 10! 1.1x 107! 7.9% 1072
Cai et al. 26 9.5x10"! 49x107! 2.6x 107! 2.0x10"1 1.6 x 107! 1.4x 107! 1.3x 107!
Urbanovici and segal 1.5 1.1 7.7 x 10! 4.4 x 10! 2.8x 10! 1.5x 107! 9.4 x 102 6.7 x 102
) Chen and Liu 1.8 1.0 7.0x 1071 4.0x 107 2.6x 101 14x 107! 8.8 x 102 6.4x 1072
Chen and Liu I Senum and Yang I 1.6 1.0 7.1x1071 4.0x 101 2.6x 101 1.4x 107! 89x102  64x10°2
Zsaké 2.7 1.2 1.6 x 107! -60x10"" —67x107" -50x10"" -35x10"1 -25x10"!
Senum and Yang Il 1.7 1.1 7.2x 107! 41x107! 2.6x107! 14x107! 8.9x 1072 6.4 %1072
Orfio 1.7 1.1 7.2x 1071 4.1x107! 2.6x 101 14x 107! 8.9 x 102 6.4x 1072
Balarin -a 3.7 2.0 74x107! 3.5x 1071 1.4x 107! 1.2x 107! 14x 107!
Cai et al. -2 2.0 89x 107! 2.6x 107! 1.2x 107! 1.1x 107! 1.5x 10! 1.9x 107!
Urbanovici and segal 4.1 2.1 1.2 44 %1071 2.1x107! 9.4 %1072 9.8 x 1072 13x 107!
) Chen and Liu 44 2.0 1.1 4.0x 101 1.8x 10! 8.4x 102 9.3 x 1072 12x 107!
Chen and Liu I Senum and Yang | 42 2.0 1.1 41x10-1  18x10-'  85x102  94x102  12x10-!
Zsaké —a 22 5.5x 101 —60x10"7  -75x10"" -55x10"' —34x10"1 —-1.9x10"!
Senum and Yang II 43 2.1 1.1 41x 10! 1.9 x 107! 8.5x 102 9.3 x 1072 1.2x 107!
Orfio 43 2.1 1.1 4.1x1071 1.9 x 107! 8.5 x 102 9.4 %1072 1.2x 107!
Balarin -2 2.9 1.7 7.6x 107! 42x 107! 1.8 x 10! 1.0x 107! 7.3 %1072
Cai et al. 2.7 1.1 5.8x 107! 2.8x 107! 1.9x10°! 1.5x 107! 13x107! 13x107!
Urbanovici and segal 1.6 12 8.6x 10! 46x1071 2.8x 101 13x 107! 8.2x 1072 6.2 x 1072
) Chen and Liu 1.9 1.2 7.9x 107! 42 %107 2.5x 1071 1.2x 107! 7.7 x 1072 5.9 %102
Chen and Liu Il Senum and Yang | 1.7 12 80x10-"  43x10-'  26x101  12x10"'  7.7x102  59x10-2
Zsaké 2.8 13 24x1071 —58x10""  -68x10"" —51x10"'" -36x10"1 —25x10"!
Senum and Yang II 1.8 1.2 8.1x107! 43x107! 2.6x 1071 1.2x 107! 7.7 %1072 5.9 %1072
Orfio 1.8 1.2 8.1x107! 43x107! 2.6x1071 1.2x 107! 7.8x10°2 5.9 x 102
Balarin -a 3.0 1.7 7.9x 1071 45x 107! 2.0x10-1 12x 107! 8.1x 1072
Cai et al. 33 12 6.3x 107! 3.1x 10! 22x1071 1.7 x 107! 1.5x 10! 13x 10!
Urbanovici and segal 2.4 1.4 9.1x10! 49x10! 3.1x10"! 1.6x 10! 9.7 x 102 7.0 x 102
Capela et al Chen and Liu 2.4 1.3 85x 107! 45x107! 2.8x 1071 1.5x 107! 9.2 x 1072 6.7 x 102
Senum and Yang I 22 13 8.6x 1071 46x1071 29x 101 1.5x 10! 9.3x 102 6.7 x 102
Zsaké 22 15 3.0x 107! —55x10""  —65x10"" —49x10" -34x10"! -24x10"!
Senum and Yang II 2.3 1.3 8.6x 107! 46x107! 29x1071 1.5x 107! 9.3 x 102 6.7 x 102
Orfio 2.4 1.3 8.6x 107! 46x107! 29x1071 1.5x 107! 9.3x 1072 6.7 x 102

2 The relative error is large than 5%.
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Fig. 1. Evolution of (a) growth exponent, n, (b) overall effective activation energy, Q, and (c) pre-exponential factor of the rate constant, Ko, with transformed fraction, as
calculated by the originally analytical model (dotted line) and the currently analytical model (solid line); evolution of transformed fraction with temperature (d), as calculated
by the numerical approach (solid line) and by Eq. (14) in combination with kinetic parameters by the originally analytical model (+) and by the currently analytical model
(x); for non-isothermal phase transformations assuming mixed nucleation, interface-controlled growth and impingement due to random dispersed nuclei.

i.e. the deviations due to model predictions (i.e. except for the mod-
els with Balarin and Zsaké formulas as g(x)) are smaller than 0.5% for
x>15; the deviations due to model predictions (i.e. the combina-
tions of Cai et al. Il as py;(x) and Urbanovici and segal, Chen and Liu,
Senum and Yang I, Senum and Yang II, and Orfio as g(x)) are smaller
than 0.5% for x<15 (see Table 6). So, the accuracy of the currently
generalized analytical description can be guaranteed by selecting
the optimal combination of the approximations in consideration.

Furthermore, the accuracy of the currently analytical model is
affected by the approximation made below Eq. (10), so thatincreas-
ing the accuracy of q(x) does not necessarily improve the accuracy
of the currently analytical model. As shown in Table 6, for specific
pum(x) and x value, the minimum deviation is always obtained for
the model predictions with Urbanovici and segal or Chen and Liu
formula as g(x), which does not correspond to the most precise
formula for q(x) (i.e. from Ref. [12], the Orfio formula).

5. Conclusions

A generalized analytical description for non-isothermal solid-
state transformation was developed, where a choice of both
nucleation modes and approximations to the so-called “temper-
ature integral” and “general temperature integral” is incorporated.
Numerical calculations have demonstrated that the currently ana-
lytical model, by selecting the optimal combination of the above
approximations, is sufficiently precise to describe the transforma-
tion, corresponding to different values of x.
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Appendix A.

Ford/m=2,Eq.(8),in combination with Eq. (9), can be rewritten
as,

gl 1515 ) v ()

x| exp (—%) q(xG(T))~T(r)2 exp G#@)) ax(T(0))] ’
m% (A1)
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Rearrangement of Eq. (A.1) gives,

e [ T2 exp (7%) o)
xe=gV3N;‘W/ (T(t) - To) Qc
@ /. _T(tf exp (-W) Axc(T(0))

- T -
T*exp (—%) qz(xc(T))/ exp (—%) dT(7)
To

—2T2 exp (—%) q(xc(T))

.
« / (Y exp (—%)q(xcﬂ(r)))dﬂf)
Ty

:
+ / T(2)" exp (—Q“ - 2Q‘7) R xe(T(1))dT(2)
L TO

2

d1(7)

(A2)

+gU2N1 £
00 ¢3Q(Z:

RT(T)

By doing the approximation under Eq. (10), employing Eq. (11)
and neglecting Ty terms, Eq. (A.2) can be rewritten as,

Xe = VAN T4 exp _2% q*(xc(T))
h @Qérg exp ((zczfg 32(xc(;))R] (r2exp (- 2¢) qtxn(r)
. R2 ) RTQG Qn R 4RT O + G (A3)
N g | 2T e () PlaD g o (T exe (S5 ) patawia()
P g g (10exp (-2 ) patawaac(D)

Rearrangement of Eq. (A.3) leads to,

2 2 rT2\? 1 2
s () o0 (28) () s o (o5

Following an analogous treatment, for d/m =3, Eq. (A.5) analo-
gous to Eq. (A.3) results as,

o) o) , paon0)) o (200 ) <RT2>3

(]
(A4)

Qv Av+Q  Qv+2Q¢ RT

3
Xe = 2U3N; (pfqg [1oexp (- 32) P*txe(1)|
6 3%\ 3 R (12 _ U
Té exp RTz)q(xG(T»QJV (TRexp( RT)q(XgEVT):QE
g | 3T e (-5 ) PG o (THexp (-2 ) palxnc(T) | (AS)
+80gNo1 305 Q Qg Qe Qu +2Q6
P10 | 1372 exp (— ) PxeM) g 5 (T0exp (~272 ) palinsac(T)))
PN g3 (T e (-2 ) pelowiaclT)))

Rearrangement of Eq. (A.5) gives,

q(xn) _ 5P2(XN+G) | 5 Pal¥n+26) _ Pe(¥n-3c)

3 ) 3 3
i () oo (3) (15) + i (4752 (

X exp (—%) (R;Z)Al
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