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a b s t r a c t

A generalized analytical description for non-isothermal solid-state transformation was developed, where
a choice of both nucleation modes and approximations to the so-called “temperature integral” and “gen-
eral temperature integral” is incorporated. The currently general description reduces to the originally
analytical model, provided if coarse approximations adopted in [F. Liu, et al., Int. Mater. Rev. 52 (2007)
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193] are chosen. Numerical calculations demonstrate that the accuracy of the general description is
guaranteed by selecting an optimal combination of the approximations.
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[13] said that, in this age of vast computational capabilities, there
is no valid reason not to use precise values for the temperature
ransformation
emperature integral

. Introduction

Solid-state phase transformations are important means for the
djustment of the microstructure and thus are the tuning of the
roperties of materials. To exploit this tool to its full extent, much
ffort is spent on the modeling of phase transformations [1–6].
ecently, an analytical phase-transformation model was proposed
hat incorporates a choice of nucleation and growth mecha-
isms, as well as impingement modes, and has been successfully
pplied to experimental results [7–9]. The model leads to equa-
ions for the degree of transformation that have the structure of
he Johnson–Mehl–Avrami (JMA) equation but with variable kinetic
arameters (n, the growth exponent, Q, the overall effective activa-
ion energy and K0, the pre-exponential factor of rate constant), i.e.
or a mixture of site saturation and continuous nucleation (or mixed
ucleation). For isothermal transformation (i.e. the temperature
olds constant upon transformation) and non-isothermal trans-

ormation (i.e. in this paper, the heating rate holds constant upon
ransformation), these kinetic parameters are, according to the
nalytical model, time-dependent and temperature-dependent,
espectively. In the original treatment [7,8], to derive the analytical

odel, the so-called “general temperature integral” [10] cannot be

∗ Corresponding author. Tel.: +86 29 88460374; fax: +86 29 88491000.
E-mail address: liufeng@nwpu.edu.cn (F. Liu).

040-6031/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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solved analytically and has to be approximated.1∫ T

T0

TM exp
(

− Q ′

RT

)
dT = RTM+2 exp(−(Q ′/RT))

Q ′ (1)

where Q′ as the constant activation energy of an Arrhenius equa-
tion, R the universal gas constant, T the temperature, T0 the starting
temperature, M a constant (for M = 0, the left-hand side of Eq. (1)
becomes the so-called “temperature integral” [12,13]). Applica-
tion of Eq. (1) is essential for deriving the analytical model, which,
however, is too coarse to give a sufficiently precise description
for non-isothermal transformation, particularly with low activation
energy and/or high transformation temperature (i.e. Q′/RT < 25), e.g.
the austenite–ferrite phase transformation of Fe–Mn alloys [14].

Within the last 50 years, a lot of approximations to the “temper-
ature integral” and the “general temperature integral” have been
proposed [10,12,15–26]. Generally, the more accurate the approx-
imation is, the more complex the formula becomes (e.g. a recently
proposed quasi-exact solution [27,28]). It is worth to do so, as Flynn
integral when calculating kinetics parameters.
On this basis, a question arises, i.e. is it possible to generalize the

originally analytical model, by incorporating the above treatment

1 To avoid unnecessary complications, the effect of T0 terms is not taken into
account in the current treatment for the approximations. However, Starink [11]
has realized that in a limited number of cases, the effect due to T0 terms cannot
be neglected. If this happens, the current model can also take the T0 terms into
consideration.

dx.doi.org/10.1016/j.tca.2010.12.020
http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:liufeng@nwpu.edu.cn
dx.doi.org/10.1016/j.tca.2010.12.020
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Nomenclature

Cc variable defined by d, m, QN, QG, pM(x) and q(x)
Cs variable defined by d, m, QG and q(x)
D0 pre-exponential factor of diffusion coefficient

(m2 s−1)
d dimensionality of the growth
f transformed fraction
fa model-predicted transformed fraction
fn numerical-calculated transformed fraction
g particle-geometry factor
K0 pre-exponential factor of rate constant
M constant in general temperature integral
m growth mode parameter
N∗

1 number of pre-exist nuclei per unit volume in mode
of site saturation (m−3)

N01 pre-exponential factor of nucleation rate in mode of
continuous nucleation (m−3 s−1)

n growth exponent
Q overall effective activation energy (J mol−1)
QD activation energy for diffusion (J mol−1)
QG activation energy for growth (J mol−1)
QN activation energy for nucleation (J mol−1)
Q′ activation energy (J mol−1)
R universal gas constant (J mol−1 K−1)
T absolute temperature (K)
T0 starting absolute temperature (K)
t time for transformation (s)
V real volume (m3)
Ve extended volume (m3)
� interface velocity (m s−1)
�0 pre-exponential factor of interface velocity (m s−1)
x variable defined by Q′/RT
xe extended transformed fraction
xG variable defined by QG/RT
xN variable defined by QN/RT
xN+G variable defined by (QN + QG)/RT
xN+2G variable defined by (QN + 2QG)/RT
xN+3G variable defined by (QN + 3QG)/RT
Y volume at time t of a particle nucleated at time �

(m3)
εr relative error of the model-predicted transformed

fraction (%)

f
g
s
n
“
b

2

2

n
f

2

a

Table 1
Expressions of q(x) considered in this work.

Authors q(x)

Balarin [15]
√

x
x+4

Cai et al. [16] x+0.66691
x+2.64943

Urbanovici and Segal [17] x2+3.5x
x2+5.5x+5

Chen and Liu [18] x2+(16/3)x+(4/3)
x2+(22/3)x+10

Senum and Yang I [19] x3+10x2+18x
x3+12x2+36x+24

Zsakó [20] x4−4x3+84x2

x4−2x3+76x2+152x−32
� time for nucleation (s)
˚ constant heating rate (K s−1)

or the “temperature integral” and the “general temperature inte-
ral”? Here, a generally analytical description for non-isothermal
olid-state transformation, which considers not only a choice of
ucleation mechanisms, but also a choice of approximations to the
temperature integral” and the “general temperature integral”, will
e shown.

. Theoretical

.1. Theoretical background

In the following, a brief description for applied modes of
ucleation and growth is given (i.e. solely for non-isothermal trans-
ormation).

.1.1. Modes of nucleation
The term site saturation is used here for the case of initial nucle-

tion site saturation where all nuclei are present at T0 already. This
Senum and Yang II [19] x4+18x3+86x2+96x
x4+20x3+120x2+240x+120

Órfão [12] 0.9999936x4+7.5739391x3+12.4648922x2+3.6907232x
x4+9.5733223x3+25.6329561x2+21.0996531x+3.9584969

implies for the nucleation rate at time � [7,8],

Ṅ(T(�)) = N∗
1ı

(
T(�) − T0

˚

)
(2)

with ı{[T(�) − T0]/˚} denoting Dirac functions, N∗
1 as the number

of nuclei per unit volume, and ˚ (=dT/d� = dT/dt) as the constant
heating rate with T(�) = T0 + ˚�.

The continuous nucleation rate per unit volume (i.e. the rate
of formation of particles (nuclei) of supercritical size) is at large
undercooling only determined by the rate of the jumping of atoms
through the interface between the nucleus of critical size and the
parent phase, which can be given by an Arrhenius term,

Ṅ(T(�)) = N01 exp
(

− QN

RT(�)

)
(3)

where N01 is a temperature-independent pre-exponential fac-
tor, and QN is the temperature-independent activation energy for
nucleation.

Here, a short introduction is given for (more general) mixed
nucleation in non-isothermal transformation. “Mixed nucleation”
represents a combination of site saturation and continuous nucle-
ation modes: the nucleation rate is equal to some weighted sum
of the nucleation rates according to continuous nucleation and site
saturation [7,8]. Hence,

Ṅ(T(�)) = N∗
1ı

(
T(�) − T0

˚

)
+ N01 exp

(
− QN

RT(�)

)
(4)

where N∗
1 and N01 include the relative contributions of the two

modes of nucleation.

2.1.2. Modes of growth
The diffusion-controlled and the interface-controlled growth

modes can be given in a compact form. At time t (i.e. tempera-
ture T(t) = T0 + ˚t) the volume Y of a particle nucleated at time �
(i.e. temperature T(�)) is given by [7,8],

Y(T(t)) = g

[∫ T(t)

T(�)

�d
T

˚

]d/m

(5)

where g is a particle-geometry factor, � the growth velocity, m
the growth mode parameter (m = 1 for interface-controlled growth;
m = 2 for volume diffusion controlled growth) and d is the dimen-
sionality of the growth (d = 1, 2, 3) [7,8].

For large undercooling, � = �0 exp(−QG/RT(t)) with QG as
the temperature-independent activation energy for growth. For

interface-controlled growth, �0 is a temperature-independent pre-
exponential factor and QG represents the energy barrier at the
interface. For volume diffusion-controlled growth, �0 equals the
pre-exponential factor for diffusion D0 and QG represents the acti-
vation energy for diffusion, QD [8].
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Table 2
Expressions of pM(x) considered in this work.

Authors pM(x)

Wanjun et al. [21] x
x+(M+2)(0.00099441x+0.93695599)

Cai et al. I [22] x−0.054182M+0.65061
x+0.93544M+2.62993

Cai et al. II [23] 0.99954x+(0.044967M+0.58058)
x+(0.94057M+2.5400)

Cai et al. III [10] 1.0002486x+0.2228027 ln x−0.05241956M+0.2975711
x+0.2333376 ln x+0.9496628M+2.2781591

Chen and Liu I [24]
(

1 + M+2
x

)
/
[

1 + 2 M+2
x + (M+1)(M+2)

x2

]
Chen and Liu II [25] x

(1.00141+0.00060M)x+(1.89376+0.95276M)

Chen and Liu III [25] x+(0.74981−0.0639M)
(1.00017+0.00013M)x+(2.73166+0.92246M)⎡
⎢⎢ 0.7110930099291700

(
x

x + 0.41577455678348

)M+2

51773

(
x

)M+2

3892

⎤
⎥⎥

2

t
d
(
e
o
p
u

V

w
t
f

l
f
S
m
n

2

c
x

x

T
E

Capela et al. [26] ⎢⎣ +0.278

+0.010

.1.3. Impingement
The number of supercritical nuclei formed in a unit volume, at

ime � during a time lapse, dT(�)/˚, is calculated by Eqs. (2)–(4) for
ifferent modes. The volume of each of these nuclei grows from �
i.e. T(�)) to t (i.e. T(t)) according to Eq. (5) where it is supposed that
very particle grows into an infinitely large parent phase, in absence
f other growing nuclei. In this hypothetical case, the volume of all
articles at temperature T, called the extended transformed vol-
me, Ve, can be described as,

e =
∫ T

T0

VṄ(T(�))Y(T)d
T(�)
˚

(6)

ith V as the sample volume, which is supposed to be constant
hroughout the transformation. Accordingly, the extended trans-
ormed fraction, xe, is defined as xe = Ve/V.

In reality, the particles do not grow individually into an infinitely
arge parent phase. A relationship between the real transformed
raction, f, and the extended transformed fraction, xe, is required.
everal equations for different types of hard impingement are sum-
arized in Ref. [8]. In this study only the mode of random dispersed

uclei is taken into consideration [2–6],

df

dxe
= 1 − f and f = 1 − exp(−xe) (7)

.2. New derivation

Assuming mixed nucleation (i.e. Eq. (4)) and interface-
ontrolled growth (i.e. Eq. (5)), the extended transformed fraction,
e follows from Eq. (6) as,

Ve
∫ T [

∗
(

T(�) − T0
)

e =
V

=
T0

N1ı
˚

+N01 exp

(
− QN

RT(�)

)]
g

[∫ T

T(�)

v0 exp

(
− QG

RT(t)

)
d

T(t)
˚

]d/m

d
T(�)
˚

(8)

able 3
xpressions for Cs and Cc used in the currently analytical model.

d/m Cs(d/m) Cc(d/m)

1 q(xG )
QG

2 q(xG )
QG

[
q(xN )

QN
− p2(xN+G )

QN +QG

]
2

(
q(xG )

QG

)2
3 q(xG )2

QG
2

[
q(xN )

QN
− 2 p2(xN+G )

QN +QG
+ p4(xN+2G )

QN +2QG

]
3

(
q(xG )

QG

)3
4 q(xG )3

QG
3

[
q(xN )

QN
− 3 p2(xN+G )

QN +QG
+ 3 p4(xN+2G )

QN +2QG
− p6(xN+3G )

QN +3QG

]

35692400
x + 2.294280360279042

56501586

(
x

x + 6.289945082937479

)M+2

⎥⎦

By defining x = Q′/RT, the “temperature integral” is expressed as
[12,15–20],∫ T

0

exp
(

− Q ′

RT

)
dT = RT2 exp(−(Q ′/RT))

Q ′ q(x) (9)

where q(x) represents the rational functions of x derived
using different methods. From Ref. [12], the expressions of
the most accurate formula for q(x) corresponding to different
complexity-levels are gathered in Table 1. Assuming xG(T) = QG/RT,
xN(T) = QN/RT, xN+G(T) = (QN + QG)/RT, xN+2G(T) = (QN + 2QG)/RT,
xN+3G(T) = (QN + 3QG)/RT, consequently, for d/m = 1, Eq. (8) can be
rewritten as,

xe = gv0N∗
1

˚

[
exp

(
− QG

RT

)
RT2

QG
q(xG(T)) − exp

(
− QG

RT0

)
RT0

2

QG
q(xG(T0))

]

+ gv0N01

˚2
exp

(
− QG

RT

)
RT2

QG
q(xG(T))

∫ T

T0

exp

(
− QN

RT(�)

)
dT(�)

− gv0N01

˚2

∫ T

T0

exp

(
− QN + QG

RT(�)

)
RT(�)2

QG
q(xG(T(�)))dT(�) (10)

With reference to Table 1, the value of q(x), close to unit, is insen-
sitive to T, and thus the integral of the last term at the right-hand
side of Eq. (10) can be approximated as q(xG(T))

∫ T

T0
exp(−((QN +

QG))/RT(�))(RT(�)2/QG)dT(�).
Corresponding to Eq. (9), the “general temperature integral” is

expressed as [10,21–26],∫ T

0

TM exp
(

− Q ′

RT

)
dT = RTM+2 exp(−(Q ′/RT))

Q ′ pM(x) (11)

where, pM(x) represents the functions of x and M (see Table 2)
derived using different methods.

Neglecting the terms including T0 (cf. Eq. (1)), Eq. (10) leads to,
xe = gv0N∗
1 exp

(
−QG

RT

)
RT2

˚

q(xG)
QG

+ gv0N01 exp
(

−QN + QG

RT

)

×
(

RT2

˚

)2 (
q(xG)q(xN)

QGQN
− q(xG)p2(xN+G)

QG(QN + QG)

)
(12)
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Table 4
Expressions for the growth exponent, n, the overall effective activation energy, Q, and the pre-exponential factor of rate constant, K0, to be insert in Eq. (14). For Cs and Cc ,
see Table 3.

Kinetic parameter Mixed nucleation

n d
m + 1

1+(r2/r1)−1

Q (d/m)QG+(n−(d/m))QN
n

d/m
[( ( ))1/(1+(r2/r1))

(
CcN01

(
1 +

(
r2
r1

)−1
))1/(1+(r2/r1)−1)

]

x

w
i
t
c

f

w

t
[
s
d
t
i

E
m
m
s
o
t

3

t
t
C
b
˚
c
d
m
e
b
i

s

Table 5
Values for parameters used for model calculations.

Model parameters

Applying the originally analytical model, even at large x value,
sufficiently precise model-predicted f data cannot be obtained (see
Table 6). Whereas, using the currently analytical model, sufficiently
precise model-predicted f data result for both high and low x values,
Kn
0

gv
0

((d/m)+1)1/(1+(r2/r1)−1)
CsN∗

1 1 + r2
r1

r2
r1

Cc N01 exp(−(QN /RT))
((d/m)+1)CsN∗

1

(
RT2

˚

)

Analogously, for d/m = 2 and 3,2 a compact form results as,

e = gv0
d/mN∗

1Cs(d/m) exp

(
− (d/m)QG

RT

)(
RT2

˚

)d/m

+ 1
(d/m) + 1

gv0
d/mN01Cc(d/m) exp

(
−QN + (d/m)QG

RT

)

×
(

RT2

˚

)(d/m)+1

(13)

here Cs(d/m) and Cc(d/m) are listed in Table 3. A detailed derivation
s available in Appendix A. Assuming the impingement mode due
o random nuclei dispersion (i.e. Eq. (7)), the transformed fraction
an be represented by,

= 1 − exp

(
−Kn

0

(
RT2

˚

)n

exp
(

−nQ

RT

))
(14)

here n, Q, and K0 are listed in Table 4.
Clearly, the currently analytical model has the same form as

he originally analytical model (see Table I and Eq. (36) in Ref.
7]). The only difference between the two models is the expres-
ions for Cs and Cc (see also r2/r1 in Table 4), which, due to the
ifferent approximations to “temperature integral” and “general
emperature integral”, affect the precision of the currently analyt-
cal description (see Tables 1–4).

Actually, if the condition of q(x) = 1 and pM(x) = 1 is adopted, both
qs. (9) and (11) reduce to Eq. (1), so that the currently analytical
odel reduces to the originally analytical model. Thus, the current
odel, as a generalized one of the original model, not only con-

iders a choice of nucleation modes, but also incorporates a choice
f approximations to the “temperature integral” and the “general
emperature integral”.

. Comparative study for the model

A comparison of kinetic parameters (n, Q and K0) deduced from
he originally analytical model (i.e. q(x) = 1 and pM(x) = 1) and from
he currently analytical one (e.g. Chen and Liu formula as q(x) and
ai et al. I formular as pM(x) in combination with Tables 3 and 4) has
een performed for a series of non-isothermal transformations (i.e.
= 5, 10, 20 and 40 K/min) assuming mixed nucleation, interface-

ontrolled growth and impingement mode due to random nuclei
ispersion (Fig. 1(a–c)). On this basis, a comparison between the

odel-predicted transformed fraction, f (i.e. using Eq. (14)) and the

xact one (i.e. numerically calculated using Eqs. (6) and (8)) has also
een performed; see Fig. 1(d). Values of model parameters are given

n Table 5.

2 Whether the approach is applicable to transformations assuming volume diffu-
ion controlled growth (i.e. d/m = 1/2 and 3/2) needs further investigation.
d/m N∗
1 (m−3) N01 (m−3 s−1) QN (J mol−1) QG (J mol−1) �0 (m s−1)

Value 3 1 × 1015 1 × 1025 1 × 105 1.5 × 105 1 × 1010

As shown in Fig. 1(a–c), insignificant deviations occur between
the kinetic parameters (n, Q and K0) predicted from the originally
and those from the currently analytical model.3 However, the rela-
tive small deviation causes a substantially magnified deviation (i.e.
due to the originally and the currently analytical model) from the
numerically calculated f data (Fig. 1(d)).4 So, the influence of the
temperature integral is strengthened through modeling the trans-
formed fraction. This also implies that the kinetic parameters due
to the currently analytical model should be more precise.

4. Accuracy evaluation for the model

As shown in Refs. [10,12,15–26], the accuracy of different
approximations to the “temperature integral” and the “general
temperature integral”, i.e. the formulas for q(x) and pM(x), depends
principally on the specific value of x. Given a real phase transfor-
mation, the mechanism (e.g. activation energy and transformation
temperature range) must be fixed, so that a specific formula of q(x)
and pM(x) should be preferred. So, by the model fits with differ-
ent combinations of q(x) and pM(x) to a real transformation, the
currently analytical model allows to find the optimal combination.

Defining fa and fn as, respectively, the solution obtained from
the model prediction (i.e. Eq. (14) with Tables 3 and 4) and the
numerical calculation (i.e. Eqs. (6) and (8)), the relative deviation
(in percentage) for the model-predicted f data can be expressed as,

εr(%) = 100
(

fa
fn

− 1
)

(15)

Eq. (15) is applied for a series of non-isothermal transformations
assuming continuous nucleation,5 interface-controlled growth and
impingement mode due to random nuclei dispersion, for a range of
x (i.e. Q/RT = 5–50). Each pair of q(x) (Table 1) and pM(x) (Table 2) is
adopted in the calculations. The deviations of the model-predicted
f data from the numerical one are shown in Table 6.
3 The relative deviation for n, Q and K0 between the two models are 0.49%, 0.15%
and 0.42%, respectively.

4 The relative deviation for f between the two models is 5.7%.
5 Applying continuous nucleation is aiming to facilitate the calculation. As for

continuous nucleation, Q holds constant in the whole process of transformation
[8], which is convenient for a fixed x value. The treatment can also be applied to
transformation with mixed nucleation, i.e. varying value of Q [8].
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Table 6
Deviations (in percentage) of the model-predicted transformed fraction from the numerical one at selected x values.

Combination of the approximations εr (%)

pM(x) q(x) 5 7.5 10 15 20 30 40 50

1 1 –a –a –a –a –a –a 4.3 6.6 × 10−1

Wanjun et al.

Balarin –a 3.3 1.7 6.0 × 10−1 2.7 × 10−1 1.5 × 10−1 1.7 × 10−1 2.2 × 10−1

Cai et al. 4.7 1.6 6.1 × 10−1 1.1 × 10−1 5.1 × 10−2 1.2 × 10−1 2.0 × 10−1 2.7 × 10−1

Urbanovici and segal 3.5 1.7 8.9 × 10−1 3.0 × 10−1 1.4 × 10−1 1.0 × 10−1 1.5 × 10−1 2.1 × 10−1

Chen and Liu 3.8 1.7 8.2 × 10−1 2.6 × 10−1 1.1 × 10−1 9.2 × 10−2 1.4 × 10−1 2.0 × 10−1

Senum and Yang I 3.6 1.7 8.3 × 10−1 2.6 × 10−1 1.1 × 10−1 9.3 × 10−2 1.5 × 10−1 2.0 × 10−1

Zsakó 4.7 1.8 2.8 × 10−1 −7.5 × 10−1 −8.2 × 10−1 −5.4 × 10−1 −2.9 × 10−1 −1.1 × 10−1

Senum and Yang II 3.7 1.7 8.4 × 10−1 2.6 × 10−1 1.1 × 10−1 9.3 × 10−2 1.5 × 10−1 2.0 × 10−1

Órfão 3.8 1.7 8.4 × 10−1 2.6 × 10−1 1.1 × 10−1 9.3 × 10−2 1.5 × 10−1 2.0 × 10−1

Cai et al. I

Balarin –a 3.1 1.8 8.1 × 10−1 4.3 × 10−1 1.6 × 10−1 6.7 × 10−2 3.0 × 10−2

Cai et al. 3.3 1.4 7.3 × 10−1 3.3 × 10−1 2.1 × 10−1 1.3 × 10−1 9.7 × 10−2 8.3 × 10−2

Urbanovici and segal 2.2 1.5 1.0 5.1 × 10−1 2.9 × 10−1 1.1 × 10−1 4.6 × 10−2 1.9 × 10−2

Chen and Liu 2.4 1.5 9.4 × 10−1 4.7 × 10−1 2.6 × 10−1 1.0 × 10−1 4.1 × 10−2 1.6 × 10−2

Senum and Yang I 2.2 1.4 9.5 × 10−1 4.8 × 10−1 2.7 × 10−1 1.0 × 10−1 4.2 × 10−2 1.6 × 10−2

Zsakó 3.3 1.6 3.9 × 10−1 −5.3 × 10−1 −6.7 × 10−1 −5.4 × 10−1 −3.9 × 10−1 −3.0 × 10−1

Senum and Yang II 2.3 1.5 9.6 × 10−1 4.8 × 10−1 2.7 × 10−1 1.0 × 10−1 4.2 × 10−2 1.6 × 10−2

Órfão 2.4 1.5 9.6 × 10−1 4.8 × 10−1 2.7 × 10−1 1.0 × 10−1 4.2 × 10−2 1.6 × 10−2

Cai et al. II

Balarin 3.8 1.4 4.7 × 10−1 −1.3 × 10−1 −2.8 × 10−1 −3.1 × 10−1 −2.7 × 10−1 −2.2 × 10−1

Cai et al. 8.5 × 10−1 −3.9 × 10−1 −6.3 × 10−1 −6.1 × 10−1 −5.0 × 10−1 −3.4 × 10−1 −2.4 × 10−1 −1.7 × 10−1

Urbanovici and segal 2.7 × 10−1 −2.6 × 10−1 −3.5 × 10−1 −4.3 × 10−1 −4.2 × 10−1 −3.5 × 10−1 −2.9 × 10−1 −2.4 × 10−1

Chen and Liu −2.9 × 10−3 −3.0 × 10−1 −4.2 × 10−1 −4.7 × 10−1 −4.4 × 10−1 −3.6 × 10−1 −2.9 × 10−1 −2.4 × 10−1

Senum and Yang I −1.8 × 10−1 −3.1 × 10−1 −4.1 × 10−1 −4.6 × 10−1 −4.4 × 10−1 −3.6 × 10−1 −2.9 × 10−1 −2.4 × 10−1

Zsakó 9.2 × 10−1 −1.6 × 10−1 −9.7 × 10−1 −1.5 −1.4 −1.0 −7.3 × 10−1 −5.5 × 10−1

Senum and Yang II −7.7 × 10−2 −2.9 × 10−1 −4.0 × 10−1 −4.6 × 10−1 −4.4 × 10−1 −3.6 × 10−1 −2.9 × 10−1 −2.4 × 10−1

Órfão −6.2 × 10−2 −2.9 × 10−1 −4.0 × 10−1 −4.6 × 10−1 −4.4 × 10−1 −3.6 × 10−1 −2.9 × 10−1 −2.4 × 10−1

Cai et al. III

Balarin –a 2.9 1.7 7.8 × 10−1 4.4 × 10−1 2.0 × 10−1 1.2 × 10−1 7.7 × 10−2

Cai et al. 3.1 1.2 6.0 × 10−1 3.0 × 10−1 2.2 × 10−1 1.7 × 10−1 1.5 × 10−1 1.3 × 10−1

Urbanovici and segal 2.0 1.3 8.8 × 10−1 4.8 × 10−1 3.0 × 10−1 1.5 × 10−1 9.6 × 10−2 6.5 × 10−2

Chen and Liu 2.3 1.3 8.1 × 10−1 4.4 × 10−1 2.8 × 10−1 1.4 × 10−1 9.0 × 10−2 6.2 × 10−2

Senum and Yang I 2.1 1.3 8.2 × 10−1 4.4 × 10−1 2.8 × 10−1 1.5 × 10−1 9.1 × 10−2 6.3 × 10−2

Zsakó 3.2 1.4 2.7 × 10−1 −5.6 × 10−1 −6.6 × 10−1 −4.9 × 10−1 −3.4 × 10−1 −2.5 × 10−1

Senum and Yang II 2.2 1.3 8.3 × 10−1 4.4 × 10−1 2.8 × 10−1 1.5 × 10−1 9.1 × 10−2 6.3 × 10−2

Órfão 2.2 1.3 8.3 × 10−1 4.4 × 10−1 2.8 × 10−1 1.5 × 10−1 9.1 × 10−2 6.3 × 10−2

Chen and Liu I

Balarin –a 2.7 1.6 7.4 × 10−1 4.2 × 10−1 1.9 × 10−1 1.1 × 10−1 7.9 × 10−2

Cai et al. 2.6 9.5 × 10−1 4.9 × 10−1 2.6 × 10−1 2.0 × 10−1 1.6 × 10−1 1.4 × 10−1 1.3 × 10−1

Urbanovici and segal 1.5 1.1 7.7 × 10−1 4.4 × 10−1 2.8 × 10−1 1.5 × 10−1 9.4 × 10−2 6.7 × 10−2

Chen and Liu 1.8 1.0 7.0 × 10−1 4.0 × 10−1 2.6 × 10−1 1.4 × 10−1 8.8 × 10−2 6.4 × 10−2

Senum and Yang I 1.6 1.0 7.1 × 10−1 4.0 × 10−1 2.6 × 10−1 1.4 × 10−1 8.9 × 10−2 6.4 × 10−2

Zsakó 2.7 1.2 1.6 × 10−1 −6.0 × 10−1 −6.7 × 10−1 −5.0 × 10−1 −3.5 × 10−1 −2.5 × 10−1

Senum and Yang II 1.7 1.1 7.2 × 10−1 4.1 × 10−1 2.6 × 10−1 1.4 × 10−1 8.9 × 10−2 6.4 × 10−2

Órfão 1.7 1.1 7.2 × 10−1 4.1 × 10−1 2.6 × 10−1 1.4 × 10−1 8.9 × 10−2 6.4 × 10−2

Chen and Liu II

Balarin –a 3.7 2.0 7.4 × 10−1 3.5 × 10−1 1.4 × 10−1 1.2 × 10−1 1.4 × 10−1

Cai et al. –a 2.0 8.9 × 10−1 2.6 × 10−1 1.2 × 10−1 1.1 × 10−1 1.5 × 10−1 1.9 × 10−1

Urbanovici and segal 4.1 2.1 1.2 4.4 × 10−1 2.1 × 10−1 9.4 × 10−2 9.8 × 10−2 1.3 × 10−1

Chen and Liu 4.4 2.0 1.1 4.0 × 10−1 1.8 × 10−1 8.4 × 10−2 9.3 × 10−2 1.2 × 10−1

Senum and Yang I 4.2 2.0 1.1 4.1 × 10−1 1.8 × 10−1 8.5 × 10−2 9.4 × 10−2 1.2 × 10−1

Zsakó –a 2.2 5.5 × 10−1 −6.0 × 10−1 −7.5 × 10−1 −5.5 × 10−1 −3.4 × 10−1 −1.9 × 10−1

Senum and Yang II 4.3 2.1 1.1 4.1 × 10−1 1.9 × 10−1 8.5 × 10−2 9.3 × 10−2 1.2 × 10−1

Órfão 4.3 2.1 1.1 4.1 × 10−1 1.9 × 10−1 8.5 × 10−2 9.4 × 10−2 1.2 × 10−1

Chen and Liu III

Balarin –a 2.9 1.7 7.6 × 10−1 4.2 × 10−1 1.8 × 10−1 1.0 × 10−1 7.3 × 10−2

Cai et al. 2.7 1.1 5.8 × 10−1 2.8 × 10−1 1.9 × 10−1 1.5 × 10−1 1.3 × 10−1 1.3 × 10−1

Urbanovici and segal 1.6 1.2 8.6 × 10−1 4.6 × 10−1 2.8 × 10−1 1.3 × 10−1 8.2 × 10−2 6.2 × 10−2

Chen and Liu 1.9 1.2 7.9 × 10−1 4.2 × 10−1 2.5 × 10−1 1.2 × 10−1 7.7 × 10−2 5.9 × 10−2

Senum and Yang I 1.7 1.2 8.0 × 10−1 4.3 × 10−1 2.6 × 10−1 1.2 × 10−1 7.7 × 10−2 5.9 × 10−2

Zsakó 2.8 1.3 2.4 × 10−1 −5.8 × 10−1 −6.8 × 10−1 −5.1 × 10−1 −3.6 × 10−1 −2.5 × 10−1

Senum and Yang II 1.8 1.2 8.1 × 10−1 4.3 × 10−1 2.6 × 10−1 1.2 × 10−1 7.7 × 10−2 5.9 × 10−2

Órfão 1.8 1.2 8.1 × 10−1 4.3 × 10−1 2.6 × 10−1 1.2 × 10−1 7.8 × 10−2 5.9 × 10−2

Capela et al.

Balarin –a 3.0 1.7 7.9 × 10−1 4.5 × 10−1 2.0 × 10−1 1.2 × 10−1 8.1 × 10−2

Cai et al. 3.3 1.2 6.3 × 10−1 3.1 × 10−1 2.2 × 10−1 1.7 × 10−1 1.5 × 10−1 1.3 × 10−1

Urbanovici and segal 2.4 1.4 9.1 × 10−1 4.9 × 10−1 3.1 × 10−1 1.6 × 10−1 9.7 × 10−2 7.0 × 10−2

Chen and Liu 2.4 1.3 8.5 × 10−1 4.5 × 10−1 2.8 × 10−1 1.5 × 10−1 9.2 × 10−2 6.7 × 10−2

Senum and Yang I 2.2 1.3 8.6 × 10−1 4.6 × 10−1 2.9 × 10−1 1.5 × 10−1 9.3 × 10−2 6.7 × 10−2

Zsakó 2.2 1.5 3.0 × 10−1 −5.5 × 10−1 −6.5 × 10−1 −4.9 × 10−1 −3.4 × 10−1 −2.4 × 10−1

Senum and Yang II 2.3 1.3 8.6 × 10−1 4.6 × 10−1 2.9 × 10−1 1.5 × 10−1 9.3 × 10−2 6.7 × 10−2

Órfão 2.4 1.3 8.6 × 10−1 4.6 × 10−1 2.9 × 10−1 1.5 × 10−1 9.3 × 10−2 6.7 × 10−2

a The relative error is large than 5%.
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y the numerical approach (solid line) and by Eq. (14) in combination with kinetic
×); for non-isothermal phase transformations assuming mixed nucleation, interfac

.e. the deviations due to model predictions (i.e. except for the mod-
ls with Balarin and Zsakó formulas as q(x)) are smaller than 0.5% for
≥ 15; the deviations due to model predictions (i.e. the combina-

ions of Cai et al. II as pM(x) and Urbanovici and segal, Chen and Liu,
enum and Yang I, Senum and Yang II, and Órfão as q(x)) are smaller
han 0.5% for x < 15 (see Table 6). So, the accuracy of the currently
eneralized analytical description can be guaranteed by selecting
he optimal combination of the approximations in consideration.

Furthermore, the accuracy of the currently analytical model is
ffected by the approximation made below Eq. (10), so that increas-
ng the accuracy of q(x) does not necessarily improve the accuracy
f the currently analytical model. As shown in Table 6, for specific
M(x) and x value, the minimum deviation is always obtained for
he model predictions with Urbanovici and segal or Chen and Liu
ormula as q(x), which does not correspond to the most precise
ormula for q(x) (i.e. from Ref. [12], the Órfão formula).

. Conclusions

A generalized analytical description for non-isothermal solid-
tate transformation was developed, where a choice of both
ucleation modes and approximations to the so-called “temper-

ture integral” and “general temperature integral” is incorporated.
umerical calculations have demonstrated that the currently ana-

ytical model, by selecting the optimal combination of the above
pproximations, is sufficiently precise to describe the transforma-
ion, corresponding to different values of x.
d (c) pre-exponential factor of the rate constant, K0, with transformed fraction, as
el (solid line); evolution of transformed fraction with temperature (d), as calculated
eters by the originally analytical model (+) and by the currently analytical model

trolled growth and impingement due to random dispersed nuclei.
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Appendix A.

For d/m = 2, Eq. (8), in combination with Eq. (9), can be rewritten
as,

xe = gv2
0

R2

˚2Q 2
G

∫ T

T0

[
N∗

1ı
(

T(�) − T0

˚

)
+ N01 exp

(
− QN

RT(�)

)]

×
[

T2 exp
(
−QG

)
q(xG(T))−T(�)2 exp

(
− QG

)
q(xG(T(�)))

]2
RT RT(�)

×d
T(�)
˚

(A.1)
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Rearrangement of Eq. (A.1) gives,

xe = gv2
0N∗

1

R2

˚2Q 2
G

∫ T

T0

ı(T(�) − T0)

⎡
⎣ T2 exp

(
− QG

RT

)
q(xG(T))

−T(�)2 exp

(
− QG

RT(�)

)
q(xG(T(�)))

⎤
⎦

2

dT(�)

+gv2
0N1

0

R2

˚3Q 2
G

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T4 exp

(
− 2QG

RT

)
q2(xG(T))

∫ T

T0

exp

(
− QN

RT(�)

)
dT(�)

−2T2 exp

(
− QG

RT

)
q(xG(T))

×
∫ T

T0

T(�)2 exp

(
− QN + QG

RT(�)

)
q(xG(T(�))) dT(�)

+
∫ T

T0

T(�)4 exp

(
− QN + 2QG

RT(�)

)
q2(xG(T(�))) dT(�)

⎤
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(A.2)

By doing the approximation under Eq. (10), employing Eq. (11)
and neglecting T0 terms, Eq. (A.2) can be rewritten as,

xe = gv2
0N∗

1
R2

˚2Q 2
G

[
T4 exp

(
−2QG

RT

)
q2(xG(T))

]

+gv2
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0
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T4 exp
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RT
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R
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R
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T6 exp

(
−QN + 2QG

RT

)
p4(xN+2G(T))

)
⎤
⎥⎥⎥⎦

(A.3)

Rearrangement of Eq. (A.3) leads to,

xe = gv2
0N∗

1

(
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(
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RT

)(
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+ 1
3
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3
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˚
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(A.4)

Following an analogous treatment, for d/m = 3, Eq. (A.5) analo-
gous to Eq. (A.3) results as,

xe = gv3
0N∗

1
R3

˚3Q 3
G

[
T6 exp
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RT
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(A.5)

Rearrangement of Eq. (A.5) gives,
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